Search results
Results from the WOW.Com Content Network
In mathematics, an extreme point of a convex set in a real or complex vector space is a point in that does not lie in any open line segment joining two points of . In linear programming problems, an extreme point is also called vertex or corner point of S . {\displaystyle S.} [ 1 ]
Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one.
For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we have f(x ∗) > f(x). Note that a point is a strict global maximum point if and only if ...
The two distinguished points are examples of extreme points of a convex set that are not exposed In mathematics, an exposed point of a convex set C {\displaystyle C} is a point x ∈ C {\displaystyle x\in C} at which some continuous linear functional attains its strict maximum over C {\displaystyle C} . [ 1 ]
Carathéodory's theorem – Point in the convex hull of a set P in Rd, is the convex combination of d+1 points in P; Helly's theorem – Theorem about the intersections of d-dimensional convex sets; Krein–Milman theorem – On when a space equals the closed convex hull of its extreme points; List of convexity topics
If D(a, b) < 0 then (a, b) is a saddle point of f. If D(a, b) = 0 then the point (a, b) could be any of a minimum, maximum, or saddle point (that is, the test is inconclusive). Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at (x, y) implies that f xx and f yy ...
Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative , if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.
A diagram showing all possible subsets of a 3-point set {x,y,z}. The Dirac measure δ x assigns a size of 1 to all sets in the upper-left half of the diagram and 0 to all sets in the lower-right half. In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not.