enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    The electric potential also varies with temperature, concentration and pressure. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.

  3. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  4. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  5. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and

  6. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    Where is the standard reduction potential of the half-reaction expressed versus the standard reduction potential of hydrogen. For standard conditions in electrochemistry (T = 25 °C, P = 1 atm and all concentrations being fixed at 1 mol/L, or 1 M) the standard reduction potential of hydrogen is fixed at zero by convention as it serves of reference.

  7. Latimer diagram - Wikipedia

    en.wikipedia.org/wiki/Latimer_diagram

    Latimer diagrams can be used in the construction of Frost diagrams, as a concise summary of the standard electrode potentials relative to the element.Since Δ r G o = -nFE o, the electrode potential is a representation of the Gibbs energy change for the given reduction.

  8. Reference electrode - Wikipedia

    en.wikipedia.org/wiki/Reference_electrode

    Common reference electrodes and potential with respect to the standard hydrogen electrode (SHE): Standard hydrogen electrode (SHE) (E = 0.000 V) activity of H + = 1 Molar; Normal hydrogen electrode (NHE) (E ≈ 0.000 V) concentration H + = 1 Molar; Reversible hydrogen electrode (RHE) (E = 0.000 V - 0.0591 × pH) at 25 °C

  9. Electrode potential - Wikipedia

    en.wikipedia.org/wiki/Electrode_potential

    To avoid possible ambiguities, the electrode potential thus defined can also be referred to as Gibbs–Stockholm electrode potential. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of E for a half-cell reaction when it is written as a reduction.