enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.

  3. Free list - Wikipedia

    en.wikipedia.org/wiki/Free_list

    Free lists make the allocation and deallocation operations very simple. To free a region, one would just link it to the free list. To allocate a region, one would simply remove a single region from the end of the free list and use it. If the regions are variable-sized, one may have to search for a region of large enough size, which can be ...

  4. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  5. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.

  6. Implicit graph - Wikipedia

    en.wikipedia.org/wiki/Implicit_graph

    In the context of efficient representations of graphs, J. H. Muller defined a local structure or adjacency labeling scheme for a graph G in a given family F of graphs to be an assignment of an O(log n)-bit identifier to each vertex of G, together with an algorithm (that may depend on F but is independent of the individual graph G) that takes as input two vertex identifiers and determines ...

  7. Kosaraju's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kosaraju's_algorithm

    Provided the graph is described using an adjacency list, Kosaraju's algorithm performs two complete traversals of the graph and so runs in Θ(V+E) (linear) time, which is asymptotically optimal because there is a matching lower bound (any algorithm must examine all vertices and edges).

  8. Graph (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Graph_(abstract_data_type)

    The time complexity of operations in the adjacency list representation can be improved by storing the sets of adjacent vertices in more efficient data structures, such as hash tables or balanced binary search trees (the latter representation requires that vertices are identified by elements of a linearly ordered set, such as integers or ...

  9. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    In the CSR, all adjacencies of a vertex is sorted and compactly stored in a contiguous chunk of memory, with adjacency of vertex i+1 next to the adjacency of i. In the example on the left, there are two arrays, C and R. Array C stores the adjacency lists of all nodes.