enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prime95 - Wikipedia

    en.wikipedia.org/wiki/Prime95

    Prime95 28.7 running a stress test on an Intel quad-core Windows 10 system. To maximize search throughput, most of Prime95 is written in hand-tuned assembly, which makes its system resource usage much greater than most other computer programs. Additionally, due to the high precision requirements of primality testing, the program is very ...

  3. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]

  4. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    Otherwise, n may or may not be prime. The Solovay–Strassen test is an Euler probable prime test (see PSW [3] page 1003). For each individual value of a, the Solovay–Strassen test is weaker than the Miller–Rabin test. For example, if n = 1905 and a = 2, then the Miller-Rabin test shows that n is composite, but the Solovay–Strassen test ...

  5. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  6. Lucas–Lehmer primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas–Lehmer_primality_test

    The Mersenne number M 3 = 2 3 −1 = 7 is prime. The Lucas–Lehmer test verifies this as follows. Initially s is set to 4 and then is updated 3−2 = 1 time: s ← ((4 × 4) − 2) mod 7 = 0. Since the final value of s is 0, the conclusion is that M 3 is prime. On the other hand, M 11 = 2047 = 23 × 89 is not prime.

  7. SuperPrime - Wikipedia

    en.wikipedia.org/wiki/SuperPrime

    SuperPrime is a computer program used for calculating the primality of a large set of positive natural numbers. Because of its multi-threaded nature and dynamic load scheduling, it scales excellently when using more than one thread (execution core). It is commonly used as an overclocking benchmark to test the speed and stability of a system.

  8. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Libgcrypt uses a similar process with base 2 for the Fermat test, but OpenSSL does not. In practice with most big number libraries such as GMP, the Fermat test is not noticeably faster than a Miller–Rabin test, and can be slower for many inputs. [4] As an exception, OpenPFGW uses only the Fermat test for probable prime testing.

  9. Hardware stress test - Wikipedia

    en.wikipedia.org/wiki/Hardware_stress_test

    As such not only does it load the CPU 100% but will also test other parts of CPU not used under applications like Prime 95. Other applications to consider are SiSoft 2012 or Passmark BurnIn. Be advised validation has not been completed using Prime 95 version 26 and LinX (10.3.7.012) and OCCT 4.1.0 beta 1 but once we have internally tested to ...