Search results
Results from the WOW.Com Content Network
For real numbers, we can define a unique cube root of all real numbers. If this definition is used, the cube root of a negative number is a negative number. The three cube roots of 1. If x and y are allowed to be complex, then there are three solutions (if x is non-zero) and so x has three cube roots.
This is because raising the latter's coefficient –1 to the nth power for even n yields 1: that is, (–r 1) n = (–1) n × r 1 n = r 1 n. As with square roots, the formula above does not define a continuous function over the entire complex plane, but instead has a branch cut at points where θ / n is discontinuous.
Some others like T. L. Heath, who translated all of Archimedes's works, disagree, putting forward evidence that Archimedes really solved cubic equations using intersections of two conics, but also discussed the conditions where the roots are 0, 1 or 2. [10] Graph of the cubic function f(x) = 2x 3 − 3x 2 − 3x + 2 = (x + 1) (2x − 1) (x − 2)
y = x 3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 2 3 = 8 or (x + 1) 3. The cube is also the number multiplied by its square:
The points P 1, P 2, and P 3 (in blue) are collinear and belong to the graph of x 3 + 3 / 2 x 2 − 5 / 2 x + 5 / 4 . The points T 1, T 2, and T 3 (in red) are the intersections of the (dotted) tangent lines to the graph at these points with the graph itself. They are collinear too.
In plain text and programming languages, a slash (also called a solidus) is used, e.g. 3 / (x + 1). Exponents are usually formatted using superscripts, as in x 2. In plain text, the TeX mark-up language, and some programming languages such as MATLAB and Julia, the caret symbol, ^, represents exponents, so x 2 is written as x ^ 2.
For each integer n > 2, the function n x is defined and increasing for x ≥ 1, and n 1 = 1, so that the n th super-root of x, , exists for x ≥ 1. However, if the linear approximation above is used, then = + if −1 < y ≤ 0, so + cannot exist.
Constant function: polynomial of degree zero, graph is a horizontal straight line; Linear function: First degree polynomial, graph is a straight line. Quadratic function: Second degree polynomial, graph is a parabola. Cubic function: Third degree polynomial. Quartic function: Fourth degree polynomial. Quintic function: Fifth degree polynomial.