Search results
Results from the WOW.Com Content Network
The endothelium that lines blood vessels is known as vascular endothelium, which is subject to and must withstand the forces of blood flow and blood pressure from the cardiovascular system. To withstand these cardiovascular forces, endothelial cells must simultaneously have a structure capable of withstanding the forces of circulation while ...
The type I (glomus) cells in the carotid (and aortic bodies) are derived from neuroectoderm and are thus electrically excitable. A decrease in oxygen partial pressure, an increase in carbon dioxide partial pressure, and a decrease in arterial pH can all cause depolarization of the cell membrane, and they affect this by blocking potassium currents.
The division of the signal into a right and left bundle and then into the Purkinje fibers allows for a simultaneous depolarization and contraction of the right and left ventricles. The contraction of the ventricles results in the QRS complex seen on an ECG tracing. ECG tracing in relation to normal depolarization and contraction of the heart.
Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.
Frames 1–3 depict the depolarization being generated in and spreading through the sinoatrial node. The SA node is too small for its depolarization to be detected on most ECGs. Frames 4–10 depict the depolarization traveling through the atria, towards the atrioventricular node. During frame 7, the depolarization is traveling through the ...
The P wave is a summation wave generated by the depolarization front as it transits the atria. Normally the right atrium depolarizes slightly earlier than left atrium since the depolarization wave originates in the sinoatrial node , in the high right atrium and then travels to and through the left atrium.
HCN4 is the main isoform expressed in the sinoatrial node, but low levels of HCN1 and HCN2 have also been reported.The current through HCN channels, called the pacemaker current (I f), plays a key role in the generation and modulation of cardiac rhythmicity, [13] as they are responsible for the spontaneous depolarization in pacemaker action potentials in the heart.
As for their particular function, peripheral chemoreceptors help maintain homeostasis in the cardiorespiratory system by monitoring concentrations of blood borne chemicals. [4] These polymodal sensors respond to variations in a number of blood properties, including low oxygen ( hypoxia ), high carbon dioxide ( hypercapnia ), and low glucose ...