enow.com Web Search

  1. Ad

    related to: law of cosines ambiguous case practice

Search results

  1. Results from the WOW.Com Content Network
  2. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 7a – Proof of the law of cosines for acute angle γ by "cutting and pasting". Fig. 7b – Proof of the law of cosines for obtuse angle γ by "cutting and pasting". One can also prove the law of cosines by calculating areas. The change of sign as the angle γ becomes obtuse makes a case distinction necessary. Recall that

  3. Hyperbolic law of cosines - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_law_of_cosines

    In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. [1] It can also be related to the relativistic velocity addition formula. [2] [3]

  4. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Case 1: three sides given (SSS). The cosine rule may be used to give the angles A, B, and C but, to avoid ambiguities, the half angle formulae are preferred. Case 2: two sides and an included angle given (SAS). The cosine rule gives a and then we are back to Case 1. Case 3: two sides and an opposite angle given (SSA).

  5. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3] A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1]) states:

  6. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    The law of tangents, although not as commonly known as the law of sines or the law of cosines, is equivalent to the law of sines, and can be used in any case where two sides and the included angle, or two angles and a side, are known.

  7. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Using the law of cosines avoids this problem: within the interval from 0° to 180° the cosine value unambiguously determines its angle. On the other hand, if the angle is small (or close to 180°), then it is more robust numerically to determine it from its sine than its cosine because the arc-cosine function has a divergent derivative at 1 ...

  8. Today's Wordle Hint, Answer for #1304 on Monday ... - AOL

    www.aol.com/todays-wordle-hint-answer-1304...

    If you’re stuck on today’s Wordle answer, we’re here to help—but beware of spoilers for Wordle 1304 ahead. Let's start with a few hints.

  9. Talk:Law of sines - Wikipedia

    en.wikipedia.org/wiki/Talk:Law_of_sines

    The introduction mentions the triangle problem of determining a triangle from 1 side length and 2 angles, and refers to an ambiguous case. This ambiguous case is later addressed right after the proof -- I understand this may be important for math homework (but it's really not relevant for this article). However, the section on "the ambiguous ...

  1. Ad

    related to: law of cosines ambiguous case practice