Search results
Results from the WOW.Com Content Network
In refrigeration and air conditioning systems, the suction pressure' (also called the low-side pressure) is the intake pressure generated by the system compressor while operating. The suction pressure, along with the suction temperature the wet bulb temperature of the discharge air are used to determine the correct refrigerant charge in a system.
The standard method for measuring pore water pressure below the water table employs a piezometer, which measures the height to which a column of the liquid rises against gravity; i.e., the static pressure (or piezometric head) of groundwater at a specific depth. [6] Piezometers often employ electronic pressure transducers to provide
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...
The above equations suggest there is a flow speed at which pressure is zero, and at even higher speeds the pressure is negative. Most often, gases and liquids are not capable of negative absolute pressure, or even zero pressure, so clearly Bernoulli's equation ceases to be valid before zero pressure is reached.
In fluid dynamics, the pressure coefficient is a dimensionless number which describes the relative pressures throughout a flow field. The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, C p.
An alternative airwattage formula is from ASTM International (see document ASTM F558 - 13) [4] P = 0.117354 ⋅ F ⋅ S {\displaystyle P=0.117354\cdot F\cdot S} Where P is the power in airwatts, F is the rate per minute (denoted cu ft/min or CFM) and S is the suction capacity expressed as a pressure in units of inches of water.
One of the methods is the instantaneous profile method, [3] where water content (or effective saturation) are determined for a series of suction pressure measurements . Due to the non-linearity of the equation, numerical techniques such as the non-linear least-squares method can be used to solve the van Genuchten parameters.