Search results
Results from the WOW.Com Content Network
Logical reasoning happens by inferring a conclusion from a set of premises. [3] Premises and conclusions are normally seen as propositions . A proposition is a statement that makes a claim about what is the case.
Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. [1] A sentence is said to be a logical consequence of a set of sentences, for a given language , if and only if , using only logic (i.e., without regard to any personal interpretations of the sentences) the sentence must ...
This definition is disputable (due to its lack of clarity. Ref: Oxford English dictionary: "induction ... 3. Logic the inference of a general law from particular instances." [clarification needed]) The definition given thus applies only when the "conclusion" is general. Two possible definitions of "inference" are:
Conclusion/Consequent: All Greeks are mortal. Each of the three distinct terms represents a category. From the example above, humans, mortal, and Greeks: mortal is the major term, and Greeks the minor term. The premises also have one term in common with each other, which is known as the middle term; in this example, humans. Both of the premises ...
For example, if A. Plato was mortal, and B. Socrates was like Plato in other respects, then asserting that C. Socrates was mortal is an example of argument by analogy because the reasoning employed in it proceeds from a particular truth in a premise (Plato was mortal) to a similar particular truth in the conclusion, namely that Socrates was mortal.
A way of writing mathematical and logical expressions where the operator precedes its operands, facilitating unambiguous interpretation without parentheses. prelinearity axiom The formula (P → Q) ∨ (Q → P). [237] [238] premise A statement in an argument that provides support or evidence for the conclusion. prenex normal form
Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to work". [1] Premises and conclusions express propositions or claims that can be true or false. An important ...
An example of this is the use of the rules of inference found within symbolic logic. Aristotle held that any logical argument could be reduced to two premises and a conclusion. [2] Premises are sometimes left unstated, in which case, they are called missing premises, for example: Socrates is mortal because all men are mortal.