enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    Nelder-Mead optimization in Python in the SciPy library. nelder-mead - A Python implementation of the Nelder–Mead method; NelderMead() - A Go/Golang implementation; SOVA 1.0 (freeware) - Simplex Optimization for Various Applications - HillStormer, a practical tool for nonlinear, multivariate and linear constrained Simplex Optimization by ...

  3. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    For example, if the feasible region is defined by the constraint set {x ≥ 0, y ≥ 0}, then the problem of maximizing x + y has no optimum since any candidate solution can be improved upon by increasing x or y; yet if the problem is to minimize x + y, then there is an optimum (specifically at (x, y) = (0, 0)).

  4. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    is the optimization variable. ‖ x ‖ 2 {\\displaystyle \\lVert x\\rVert _{2}} is the Euclidean norm and T {\\displaystyle ^{T}} indicates transpose . [ 1 ] The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function ( A x + b , c T x + d ) {\\displaystyle (Ax+b,c^{T}x+d)} to lie in the ...

  5. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  6. Quadratic unconstrained binary optimization - Wikipedia

    en.wikipedia.org/wiki/Quadratic_unconstrained...

    As an illustrative example of how QUBO can be used to encode an optimization problem, we consider the problem of cluster analysis. Here, we are given a set of 20 points in 2D space, described by a matrix D ∈ R 20 × 2 {\displaystyle D\in \mathbb {R} ^{20\times 2}} , where each row contains two cartesian coordinates .

  7. List of optimization software - Wikipedia

    en.wikipedia.org/wiki/List_of_optimization_software

    The use of optimization software requires that the function f is defined in a suitable programming language and connected at compilation or run time to the optimization software. The optimization software will deliver input values in A , the software module realizing f will deliver the computed value f ( x ) and, in some cases, additional ...

  8. Test functions for optimization - Wikipedia

    en.wikipedia.org/.../Test_functions_for_optimization

    In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given. The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3]

  9. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    The SciPy scientific library, for instance, uses HiGHS as its LP solver [13] from release 1.6.0 [14] and the HiGHS MIP solver for discrete optimization from release 1.9.0. [15] As well as offering an interface to HiGHS, the JuMP modelling language for Julia [ 16 ] also describes the specific use of HiGHS in its user documentation. [ 17 ]