Search results
Results from the WOW.Com Content Network
A RAID 0 setup can be created with disks of differing sizes, but the storage space added to the array by each disk is limited to the size of the smallest disk. For example, if a 120 GB disk is striped together with a 320 GB disk, the size of the array will be 120 GB × 2 = 240 GB.
In this layout, data striping is combined with mirroring, by mirroring each written stripe to one of the remaining disks in the array. Usable capacity of a RAID 1E array is 50% of the total capacity of all drives forming the array; if drives of different sizes are used, only the portions equal to the size of smallest member are utilized on each ...
RAID 01, also called RAID 0+1, is a RAID level using a mirror of stripes, achieving both replication and sharing of data between disks. [3] The usable capacity of a RAID 01 array is the same as in a RAID 1 array made of the same drives, in which one half of the drives is used to mirror the other half.
RAIS stripes and mirrors application code and memory across an array of ordinary servers using the standard RAID schemata of level 0, level 1, level 5, level 1+0. This is possible through a memory management system called Versioned Memory. [citation needed] Data blocks of each stream are striped across the array servers.
RAID (/ r eɪ d /; redundant array of inexpensive disks or redundant array of independent disks) [1] [2] is a data storage virtualization technology that combines multiple physical data storage components into one or more logical units for the purposes of data redundancy, performance improvement, or both.
RAID In some RAID configurations, such as RAID 0, failure of a single member drive of the RAID array causes all stored data to be lost. In other RAID configurations, such as a RAID 5 that contains distributed parity and provides redundancy, if one member drive fails the data can be restored using the other drives in the array. LVM2
RAID 1 – Mirror. RAID 4 – Like RAID 0, but with an extra device for the parity. RAID 5 – Like RAID 4, but with the parity distributed across all devices. RAID 6 – Like RAID 5, but with two parity segments per stripe. RAID 10 – Take a number of RAID 1 mirrorsets and stripe across them RAID 0 style.
Linux supports Matrix RAID and Rapid Storage Technology (RST) through device mapper, with dmraid tool, for RAID 0, 1 and 10. And Linux MD RAID, with mdadm tool, for RAID 0, 1, 10, and 5. Set up of the RAID volumes must be done by using the ROM option in the Matrix Storage Manager, then further configuration can be done in DM-RAID or MD-RAID. [10]