enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pi bond - Wikipedia

    en.wikipedia.org/wiki/Pi_bond

    Pi bonds can form in double and triple bonds but do not form in single bonds in most cases. The Greek letter π in their name refers to p orbitals, since the orbital symmetry of the pi bond is the same as that of the p orbital when seen down the bond axis. One common form of this sort of bonding involves p orbitals themselves, though d orbitals ...

  3. Bonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Bonding_molecular_orbital

    Pi bonds are created by the “side-on” interactions of the orbitals. [3] Once again, in molecular orbitals, bonding pi (π) electrons occur when the interaction of the two π atomic orbitals are in-phase. In this case, the electron density of the π orbitals needs to be symmetric along the mirror plane in order to create the bonding ...

  4. Sigma-pi and equivalent-orbital models - Wikipedia

    en.wikipedia.org/wiki/Sigma-pi_and_equivalent...

    The σ-π model differentiates bonds and lone pairs of σ symmetry from those of π symmetry, while the equivalent-orbital model hybridizes them. The σ-π treatment takes into account molecular symmetry and is better suited to interpretation of aromatic molecules ( Hückel's rule ), although computational calculations of certain molecules tend ...

  5. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    This MO is called the bonding orbital and its energy is lower than that of the original atomic orbitals. A bond involving molecular orbitals which are symmetric with respect to any rotation around the bond axis is called a sigma bond (σ-bond). If the phase cycles once while rotating round the axis, the bond is a pi bond (π-bond).

  6. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The bond order, or number of bonds, of a molecule can be determined by combining the number of electrons in bonding and antibonding molecular orbitals. A pair of electrons in a bonding orbital creates a bond, whereas a pair of electrons in an antibonding orbital negates a bond.

  7. Molecular electronic transition - Wikipedia

    en.wikipedia.org/wiki/Molecular_electronic...

    Likewise, promotion of an electron from a pi-bonding orbital (π) to an antibonding pi orbital (π*) is denoted as a π → π* transition. Auxochromes with free electron pairs (denoted as "n") have their own transitions, as do aromatic pi bond transitions.

  8. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    Pi bonds occur when two orbitals overlap when they are parallel. [9] For example, a bond between two s-orbital electrons is a sigma bond, because two spheres are always coaxial. In terms of bond order, single bonds have one sigma bond, double bonds consist of one sigma bond and one pi bond, and triple bonds contain one sigma bond and two pi bonds.

  9. Electronic properties of graphene - Wikipedia

    en.wikipedia.org/wiki/Electronic_properties_of...

    Sigma and pi bonds in graphene. Sigma bonds result from an overlap of sp 2 hybrid orbitals, whereas pi bonds emerge from tunneling between the protruding p z orbitals. For clarity, only one p z orbital is shown with its three nearest neighbors.