enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermal_equilibrium

    Development of a thermal equilibrium in a closed system over time through a heat flow that levels out temperature differences. Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A ...

  3. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    These concepts of temperature and of thermal equilibrium are fundamental to thermodynamics and were clearly stated in the nineteenth century. The name 'zeroth law' was invented by Ralph H. Fowler in the 1930s, long after the first, second, and third laws were widely recognized.

  4. Thermalisation - Wikipedia

    en.wikipedia.org/wiki/Thermalisation

    Thermalisation, thermal equilibrium, and temperature are therefore important fundamental concepts within statistical physics, statistical mechanics, and thermodynamics; all of which are a basis for many other specific fields of scientific understanding and engineering application. Examples of thermalisation include:

  5. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    This statement implies that thermal equilibrium is an equivalence relation on the set of thermodynamic systems under consideration. Systems are said to be in equilibrium if the small, random exchanges between them (e.g. Brownian motion) do not lead to a net change in energy. This law is tacitly assumed in every measurement of temperature.

  6. Zeroth law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Zeroth_law_of_thermodynamics

    If it is defined that a thermodynamic system is in thermal equilibrium with itself (i.e., thermal equilibrium is reflexive), then the zeroth law may be stated as follows: If a body C, be in thermal equilibrium with two other bodies, A and B, then A and B are in thermal equilibrium with one another. [8]

  7. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by modes other than thermodynamic work and transfer of matter. Such modes are microscopic, mainly thermal conduction, radiation, and friction, as distinct from the macroscopic modes, thermodynamic work and transfer of matter. [1]

  8. Thermodynamic system - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_system

    Thermodynamic equilibrium is characterized not only by the absence of any flow of mass or energy, but by “the absence of any tendency toward change on a macroscopic scale.” [2] Equilibrium thermodynamics, as a subject in physics, considers macroscopic bodies of matter and energy in states of internal thermodynamic equilibrium.

  9. Equilibrium thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_thermodynamics

    The word equilibrium implies a state of balance. Equilibrium thermodynamics, in origins, derives from analysis of the Carnot cycle. Here, typically a system, as cylinder of gas, initially in its own state of internal thermodynamic equilibrium, is set out of balance via heat input from a combustion reaction. Then, through a series of steps, as ...