enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.

  3. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    The equivalence between gravitational and inertial effects does not constitute a complete theory of gravity. When it comes to explaining gravity near our own location on the Earth's surface, noting that our reference frame is not in free fall, so that fictitious forces are to be expected, provides a suitable explanation. But a freely falling ...

  4. Physical theories modified by general relativity - Wikipedia

    en.wikipedia.org/wiki/Physical_theories_modified...

    For gravitation, the relationship between Newton's theory of gravity and general relativity is governed by the correspondence principle: General relativity must produce the same results as gravity does for the cases where Newtonian physics has been shown to be accurate.

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For example, consider a book at rest on a table. The Earth's gravity pulls down upon the book. The "reaction" to that "action" is not the support force from the table holding up the book, but the gravitational pull of the book acting on the Earth. [note 6] Newton's third law relates to a more fundamental principle, the conservation of momentum.

  6. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...

  7. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    The deflection of light by gravity is responsible for a new class of astronomical phenomena. If a massive object is situated between the astronomer and a distant target object with appropriate mass and relative distances, the astronomer will see multiple distorted images of the target. Such effects are known as gravitational lensing. [109]

  8. Gravitation (book) - Wikipedia

    en.wikipedia.org/wiki/Gravitation_(book)

    The book that educated at least two generations of researchers in gravitational physics. Comprehensive and encyclopedic, the book is written in an often-idiosyncratic way that you will either like or not. Pankaj Sharan writes: [7] This large sized (20cm × 25cm), 1272 page book begins at the very beginning and has everything on gravity (up to ...

  9. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]