Search results
Results from the WOW.Com Content Network
A non-associative algebra [1] (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative.That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative.
Algebraic number: Any number that is the root of a non-zero polynomial with rational coefficients. Transcendental number: Any real or complex number that is not algebraic. Examples include e and π. Trigonometric number: Any number that is the sine or cosine of a rational multiple of π.
Examples are the octonions and Lie algebras. In Lie algebras, the multiplication satisfies Jacobi identity instead of the associative law; this allows abstracting the algebraic nature of infinitesimal transformations. Other examples are quasigroup, quasifield, non-associative ring, and commutative non-associative magmas.
A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language. The Zipf–Mandelbrot law is a discrete power law distribution which is a generalization of the Zipf distribution. Conway–Maxwell–Poisson distribution Poisson distribution Skellam distribution
For example, the relation R on the integers, such that a R b if and only if a + b is odd, is intransitive. If a R b and b R c, then either a and c are both odd and b is even, or vice-versa. In either case, a + c is even. A second example of an antitransitive relation: the defeated relation in knockout tournaments. If player A defeated player B ...
Some common non-elementary antiderivative functions are given names, defining so-called special functions, and formulas involving these new functions can express a larger class of non-elementary antiderivatives. The examples above name the corresponding special functions in parentheses.
One case for non-commutative rings where localization has a clear interest is for rings of differential operators. It has the interpretation, for example, of adjoining a formal inverse D −1 for a differentiation operator D. This is done in many contexts in methods for differential equations.
Name Dim Equation Applications Landau–Lifshitz model: 1+n = + Magnetic field in solids Lin–Tsien equation: 1+2 + = Liouville equation: any + = Liouville–Bratu–Gelfand equation