Search results
Results from the WOW.Com Content Network
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] There is a one-to-one correspondence between the Mersenne primes and the even perfect numbers, but it is unknown whether there exist odd perfect numbers. This is due to the Euclid–Euler theorem, partially proved by Euclid and completed by ...
A perfect number is a natural number that equals the sum of its proper divisors, the numbers that are less than it and divide it evenly (with remainder zero). For instance, the proper divisors of 6 are 1, 2, and 3, which sum to 6, so 6 is perfect. A Mersenne prime is a prime number of the form M p = 2 p − 1, one less than a power of two.
It can be proven that: . For a given prime number p, if n is p-perfect and p does not divide n, then pn is (p + 1)-perfect.This implies that an integer n is a 3-perfect number divisible by 2 but not by 4, if and only if n/2 is an odd perfect number, of which none are known.
6 is the second smallest composite number. [1] It is also the first number that is the sum of its proper divisors, making it the smallest perfect number. [2] 6 is the first unitary perfect number, since it is the sum of its positive proper unitary divisors, without including itself. Only five such numbers are known to exist.
The perfect number is simply that which helps you get by. But would we all be so lucky to have that one special friend who can tell you when to just shut the fuck up. I’ll clink a Cosmo glass to ...
Mersenne primes M p are closely connected to perfect numbers. In the 4th century BC, Euclid proved that if 2 p − 1 is prime, then 2 p − 1 (2 p − 1) is a perfect number. In the 18th century, Leonhard Euler proved that, conversely, all even perfect numbers have this form. [5] This is known as the Euclid–Euler theorem.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!