Search results
Results from the WOW.Com Content Network
Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.
Therefore no trait is purely Mendelian, but many traits are almost entirely Mendelian, including canonical examples, such as those listed below. Purely Mendelian traits are a minority of all traits, since most phenotypic traits exhibit incomplete dominance, codominance, and contributions from many genes.
A phenotypic trait is an obvious, observable, and measurable characteristic of an organism; it is the expression of genes in an observable way. An example of a phenotypic trait is a specific hair color or eye color. Underlying genes, that make up the genotype, determine the hair color, but the hair color observed is the phenotype.
Offspring with either one or two copies of the dominant allele will display the dominant phenotype. Very few phenotypes are purely Mendelian traits. Common violations of the Mendelian model include incomplete dominance , codominance , genetic linkage , environmental effects , and quantitative contributions from a number of genes (see: gene ...
Figure 1. Relationship of phenotypic values to additive and dominance effects using a completely dominant locus. The simplest genetic model involves a single locus with two alleles (b and B) affecting one quantitative phenotype. The number of B alleles can be 0, 1, or 2.
All the haploid sperm and eggs produced by meiosis received one chromosome. All the zygotes received one R allele (from the round seed parent) and one r allele (from the wrinkled seed parent). Because the R allele is dominant to the r allele, the phenotype of all the seeds was round. The phenotypic ratio in this case of Monohybrid cross is 1.
Environmental factors and other external influences can also play a role in phenotypic variation. Genetic architecture is a broad term that can be described for any given individual based on information regarding gene and allele number, the distribution of allelic and mutational effects, and patterns of pleiotropy, dominance, and epistasis. [1]
The phenotypic ratio of a cross between two heterozygotes is 9:3:3:1, where 9/16 of the individuals possess the dominant phenotype for both traits, 3/16 of the individuals possess the dominant phenotype for one trait, 3/16 of the individuals possess the dominant phenotype for the other trait, and 1/16 are recessive for both traits. [1]