enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  3. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...

  4. Solid harmonics - Wikipedia

    en.wikipedia.org/wiki/Solid_harmonics

    Introducing r, θ, and φ for the spherical polar coordinates of the 3-vector r, and assuming that is a (smooth) function , we can write the Laplace equation in the following form = (^) =,, where L 2 is the square of the nondimensional angular momentum operator, ^ = ().

  5. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The Laplace–Beltrami operator also can be generalized to an operator (also called the Laplace–Beltrami operator) which operates on tensor fields, by a similar formula. Another generalization of the Laplace operator that is available on pseudo-Riemannian manifolds uses the exterior derivative , in terms of which the "geometer's Laplacian" is ...

  6. Infinity Laplacian - Wikipedia

    en.wikipedia.org/wiki/Infinity_Laplacian

    In this equation, we used sup and inf instead of max and min because the graph (,) does not have to be locally finite (i.e., to have finite degrees): a key example is when () is the set of points in a domain in , and (,) if their Euclidean distance is at most . The importance of this example lies in the following.

  7. Oblate spheroidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Oblate_spheroidal_coordinates

    Oblate spheroidal coordinates are often useful in solving partial differential equations when the boundary conditions are defined on an oblate spheroid or a hyperboloid of revolution. For example, they played an important role in the calculation of the Perrin friction factors , which contributed to the awarding of the 1926 Nobel Prize in ...

  8. Bateman transform - Wikipedia

    en.wikipedia.org/wiki/Bateman_transform

    In the mathematical study of partial differential equations, the Bateman transform is a method for solving the Laplace equation in four dimensions and wave equation in three by using a line integral of a holomorphic function in three complex variables. It is named after the mathematician Harry Bateman, who first published the result in (Bateman ...

  9. Fundamental solution - Wikipedia

    en.wikipedia.org/wiki/Fundamental_solution

    Once the fundamental solution is found, it is straightforward to find a solution of the original equation, through convolution of the fundamental solution and the desired right hand side. Fundamental solutions also play an important role in the numerical solution of partial differential equations by the boundary element method.