enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    Hyperbolic paraboloid A model of an elliptic hyperboloid of one sheet A monkey saddle. A saddle surface is a smooth surface containing one or more saddle points.. Classical examples of two-dimensional saddle surfaces in the Euclidean space are second order surfaces, the hyperbolic paraboloid = (which is often referred to as "the saddle surface" or "the standard saddle surface") and the ...

  3. List of hyperboloid structures - Wikipedia

    en.wikipedia.org/wiki/List_of_hyperboloid_structures

    Hyperbolic paraboloid saddle roof on train station Church Army Chapel, Blackheath: 1963 Blackheath, south east London United Kingdom: Hyperbolic paraboloid saddle roof on church E.T. Spashett: Kobe Port Tower: 1963 Kōbe Japan: Hyperboloid observation tower 108 m (354 ft) Nikken Sekkei Company: Saint Louis Science Center's James S. McDonnell ...

  4. Hyperboloid structure - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_structure

    Antoni Gaudi used structures in the form of hyperbolic paraboloid (hypar) and hyperboloid of revolution in the Sagrada Família in 1910. [4] In the Sagrada Família, there are a few places on the nativity facade – a design not equated with Gaudi's ruled-surface design, where the hyperboloid crops up. All around the scene with the pelican ...

  5. Hyperboloid - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid

    In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes.A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

  6. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    A hyperbolic paraboloid with lines contained in it Pringles fried snacks are in the shape of a hyperbolic paraboloid. The hyperbolic paraboloid is a doubly ruled surface: it contains two families of mutually skew lines. The lines in each family are parallel to a common plane, but not to each other. Hence the hyperbolic paraboloid is a conoid.

  7. Paraboloidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Paraboloidal_coordinates

    The coordinate surfaces of the former are parabolic cylinders, and the coordinate surfaces of the latter are circular paraboloids. Differently from cylindrical and rotational parabolic coordinates, but similarly to the related ellipsoidal coordinates , the coordinate surfaces of the paraboloidal coordinate system are not produced by rotating or ...

  8. Ruled surface - Wikipedia

    en.wikipedia.org/wiki/Ruled_surface

    The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points (Fuchs & Tabachnikov 2007). The properties of being ruled or doubly ruled are preserved by projective maps, and therefore are concepts of projective geometry.

  9. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    Other models of hyperbolic space can be thought of as map projections of S +: the Beltrami–Klein model is the projection of S + through the origin onto a plane perpendicular to a vector from the origin to specific point in S + analogous to the gnomonic projection of the sphere; the Poincaré disk model is a projection of S + through a point ...