Search results
Results from the WOW.Com Content Network
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.
For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.
By considering the connectivity of these neighboring vertices, a vertex figure can be constructed for each vertex of a polytope: Each vertex of the vertex figure coincides with a vertex of the original polytope. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two alternate vertices from an ...
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices. For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}. If m is 2, for example, then every second point is
A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal; examples include Platonic and Archimedean solids as well as prisms and antiprisms. [3] The Johnson solids are named after American mathematician Norman Johnson (1930–2017), who published a list of 92 such polyhedra in 1966.
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.