Search results
Results from the WOW.Com Content Network
mmH 2 O ≈ 999.972 kg/m 3 × 1 mm × g 0 = 0.999 972 kgf/m 2 = 9.806 38 Pa: pascal (SI unit) Pa ≡ N/m 2 = kg/(m⋅s 2) = 1 Pa [34] pièze (mts unit) pz ≡ 1000 kg/m⋅s 2 = 10 3 Pa = 1 kPa pound per square foot: psf ≡ 1 lbf/ft 2: ≈ 47.880 26 Pa [33] pound per square inch: psi ≡ 1 lbf/in 2: ≈ 6.894 757 × 10 3 Pa [33] poundal per ...
The kilopound per square inch (ksi) is a scaled unit derived from psi, equivalent to a thousand psi (1000 lbf/in 2).. ksi are not widely used for gas pressures. They are mostly used in materials science, where the tensile strength of a material is measured as a large number of psi.
[2] Alternative standard in uncommon usage are 60 °F (15,6 °C), or 68 °F (20 °C), and depends on industry standards rather than on international standards. Feet of water is an alternative way to specify pressure as height of a water column; it is conventionally equated to 2,989.067 pascals (0.4335275 psi).
A centimetre of water [1] is a unit of pressure. It may be defined as the pressure exerted by a column of water of 1 cm in height at 4 °C (temperature of maximum density) at the standard acceleration of gravity, so that 1 cmH 2 O (4°C) = 999.9720 kg/m 3 × 9.80665 m/s 2 × 1 cm = 98.063754138 Pa ≈ 98.0638 Pa, but conventionally a nominal maximum water density of 1000 kg/m 3 is used, giving ...
Pd = H 2 × 377 and Pd = E 2 ÷ 377 where Pd is the power density in watts per square meter (one W/m 2 is equal to 0.1 mW/cm 2), H 2 = the square of the value of the magnetic field in amperes RMS squared per meter squared, E 2 = the square of the value of the electric field in volts RMS squared per meter squared. [6]
A newton is equal to 1 kg⋅m/s 2, and a kilogram-force is 9.80665 N, [3] meaning that 1 kgf/cm 2 equals 98.0665 kilopascals (kPa). In some older publications, kilogram-force per square centimetre is abbreviated ksc instead of kg/cm 2.
The dyne is defined as "the force required to accelerate a mass of one gram at a rate of one centimetre per second squared". [2] An equivalent definition of the dyne is "that force which, acting for one second, will produce a change of velocity of one centimetre per second in a mass of one gram".
Although such information contains long lists of sieve sizes, in practice sieves are normally used in series in which each member sieve is selected to pass particles approximately 1/ √ 2 smaller in diameter or 1/2 smaller in cross-sectional area than the previous sieve. For example the series 80mm, 63, 40, 31.5, 20, 16, 14, 10, 8, 6.3, 4, 2.8 ...