enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic braking (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Magnetic_braking_(astronomy)

    One possible explanation for the braking is the interaction of the protostar's magnetic field with the stellar wind. In the case of the Solar System, when the planets' angular momenta are compared to the Sun's own, the Sun has less than 1% of its supposed angular momentum. In other words, the Sun has slowed down its spin while the planets have not.

  3. Differential rotation - Wikipedia

    en.wikipedia.org/wiki/Differential_rotation

    Stars and planets rotate in the first place because conservation of angular momentum turns random drifting of parts of the molecular cloud that they form from into rotating motion as they coalesce. Given this average rotation of the whole body, internal differential rotation is caused by convection in stars which is a movement of mass, due to ...

  4. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Earth's rotation imaged by Deep Space Climate Observatory, showing tilt. Earth's rotation or Earth's spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion.

  5. Astronomical nutation - Wikipedia

    en.wikipedia.org/wiki/Astronomical_nutation

    Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object.

  6. Nodal precession - Wikipedia

    en.wikipedia.org/wiki/Nodal_precession

    The rate of precession depends on the inclination of the orbital plane to the equatorial plane, as well as the orbital eccentricity.. For a satellite in a prograde orbit around Earth, the precession is westward (nodal regression), that is, the node and satellite move in opposite directions. [1]

  7. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    All eight planets in the Solar System orbit the Sun in the direction of the Sun's rotation, which is counterclockwise when viewed from above the Sun's north pole. Six of the planets also rotate about their axis in this same direction. The exceptions – the planets with retrograde rotation – are Venus and Uranus.

  8. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    The common noun ‘moon’ (not capitalized) is used to mean any natural satellite of the other planets. Tidal force is the combination of out-of-balance forces and accelerations of (mostly) solid bodies that raises tides in bodies of liquid (oceans), atmospheres, and strains planets' and satellites' crusts.

  9. Poles of astronomical bodies - Wikipedia

    en.wikipedia.org/wiki/Poles_of_astronomical_bodies

    The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons.