Search results
Results from the WOW.Com Content Network
In 1985 he was the Annual Visiting Lecturer of the South African Mathematical Society. [6] A partial list of Rotman's publications includes: An Introduction to Homological Algebra (1979), Pure and Applied Mathematics, vol. 85, Academic Press; ISBN 0-12-599250-5 [7] An Introduction to Algebraic Topology (1988), Springer-Verlag; ISBN 0-387-96678-1
He was known for his book on non-Euclidean geometry (1st edition, 1974; 4th edition, 2008) [3] [4] and his book on algebraic topology (1st edition, 1967, published with the title Lectures on Algebraic Topology; revised edition published, with John R. Harper as co-author, in 1981 with the title Algebraic Topology: A First Course). [5] [6] [7]
A torus, one of the most frequently studied objects in algebraic topology. Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.
Undergraduate Texts in Mathematics (UTM) (ISSN 0172-6056) is a series of undergraduate-level textbooks in mathematics published by Springer-Verlag.The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size.
In mathematics, more specifically algebraic topology, a pair (,) is shorthand for an inclusion of topological spaces:.Sometimes is assumed to be a cofibration.A morphism from (,) to (′, ′) is given by two maps : ′ and : ′ such that ′ =.
Albrecht Dold: Lectures on Algebraic Topology, Springer ISBN 3-540-58660-1. Allen Hatcher: Algebraic Topology, Cambridge University Press ISBN 978-0-521-79540-1. A free electronic version is available on the author's homepage
A Concise Course in Algebraic Topology. University of Chicago Press. pp. 183– 198. ISBN 0-226-51182-0. This textbook gives a detailed construction of the Thom class for trivial vector bundles, and also formulates the theorem in case of arbitrary vector bundles. Stong, Robert E. (1968). Notes on cobordism theory. Princeton University Press ...
It provides, in the classical setting of field theory, an alternative perspective to that of Emil Artin based on linear algebra, which became standard from about the 1930s. The approach of Alexander Grothendieck is concerned with the category-theoretic properties that characterise the categories of finite G -sets for a fixed profinite group G .