Search results
Results from the WOW.Com Content Network
A regular dodecahedron or pentagonal dodecahedron [notes 1] is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids , described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler .
In geometry, a dodecahedron (from Ancient Greek δωδεκάεδρον (dōdekáedron); from δώδεκα (dṓdeka) 'twelve' and ἕδρα (hédra) 'base, seat, face') or duodecahedron [1] is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid.
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.
Icosahedral symmetry is equivalently the projective special linear group PSL(2,5), and is the symmetry group of the modular curve X(5), and more generally PSL(2,p) is the symmetry group of the modular curve X(p). The modular curve X(5) is geometrically a dodecahedron with a cusp at the center of each polygonal face, which demonstrates the ...
In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices , and 120 edges .
A dodecahedron and its dual icosahedron The intersection of both solids is the icosidodecahedron , and their convex hull is the rhombic triacontahedron . Seen from 2-fold, 3-fold and 5-fold symmetry axes
Because of its reversal, the Bilinski dodecahedron has a lower order of symmetry; its symmetry group is that of a rectangular cuboid: D 2h, [2,2], (*222), of order 8. This is a subgroup of octahedral symmetry; its elements are three 2-fold symmetry axes, three symmetry planes (which are also the axial planes of this solid), and a center of inversion symmetry.
The icosahedral group of order 60, rotational symmetry group of the regular dodecahedron and the regular icosahedron. It is isomorphic to A 5. The conjugacy classes of I are: identity; 12 × rotation by ±72°, order 5; 12 × rotation by ±144°, order 5; 20 × rotation by ±120°, order 3; 15 × rotation by 180°, order 2