Search results
Results from the WOW.Com Content Network
In such cases, the electron transfer is termed intermolecular electron transfer. A famous example of an inner sphere ET process that proceeds via a transitory bridged intermediate is the reduction of [CoCl(NH 3) 5] 2+ by [Cr(H 2 O) 6] 2+. [5] [6] In this case, the chloride ligand is the bridging ligand that covalently connects the redox ...
"Redox" is a portmanteau of the words "REDuction" and "OXidation." The term "redox" was first used in 1928. [6] Oxidation is a process in which a substance loses electrons. Reduction is a process in which a substance gains electrons. The processes of oxidation and reduction occur simultaneously and cannot occur independently. [5]
In these experiments, the total current passed is measured directly or indirectly to determine the number of electrons passed. Knowing the number of electrons passed can indicate the concentration of the analyte or when the concentration is known, the number of electrons transferred in the redox reaction.
Elementary steps like proton coupled electron transfer and the movement of electrons between an electrode and substrate are special to electrochemical processes. . Electrochemical mechanisms are important to all redox chemistry including corrosion, redox active photochemistry including photosynthesis, other biological systems often involving electron transport chains and other forms of ...
Illustration of a redox reaction Sodium chloride is formed through the redox reaction of sodium metal and chlorine gas. Redox reactions can be understood in terms of the transfer of electrons from one involved species (reducing agent) to another (oxidizing agent). In this process, the former species is oxidized and the latter is reduced. Though ...
n = number of electrons transferred in the redox event (usually 1) A = electrode area in cm 2; F = Faraday constant in C mol −1; D = diffusion coefficient in cm 2 /s; C = concentration in mol/cm 3; ν = scan rate in V/s; R = Gas constant in J K −1 mol −1; T = temperature in K; The constant with a value of 2.69×10 5 has units of C mol − ...
Electrochemical kinetics is the field of electrochemistry that studies the rate of electrochemical processes. This includes the study of how process conditions, such as concentration and electric potential, influence the rate of oxidation and reduction reactions that occur at the surface of an electrode, as well as an investigation into electrochemical reaction mechanisms.
This is known as the charge transfer rate. The second is the rate at which reactants are provided, and products removed, from the electrode region by various processes including diffusion, migration, and convection. The latter is known as the mass-transfer rate [Note 1]. These two rates determine the concentrations of the reactants and products ...