Search results
Results from the WOW.Com Content Network
A schematic of a superhet AM receiver. Note that the radio includes an AGC loop in order to maintain the RF and IF stages in their linear region, and to produce an audio output not dependent on the signal power received. Here we show block diagrams for typical superheterodyne receivers for AM and FM broadcast respectively.
In telecommunications, an eye pattern, also known as an eye diagram, is an oscilloscope display in which a digital signal from a receiver is repetitively sampled and applied to the vertical input (y-axis), while the data rate is used to trigger the horizontal sweep (x-axis). It is so called because, for several types of coding, the pattern ...
A 5-tube superheterodyne receiver manufactured by Toshiba circa 1955 Superheterodyne transistor radio circuit circa 1975. A superheterodyne receiver, often shortened to superhet, is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency.
English: Block diagram of a tuned radio frequency (TRF) receiver, a type of radio receiver circuit invented in 1916 by Ernst Alexanderson and widely used in the vacuum tube receivers of the 1920s.
The schematic diagram shows a typical TRF receiver. This particular example uses six triodes. It has two radio frequency amplifier stages, one grid-leak detector/amplifier and three class ‘A’ audio amplifier stages. There are 3 tuned circuits T1-C1, T2-C2, and T3-C3.
Block diagram of a superheterodyne receiver. The RF front end consists of the components on the left colored red. In a radio receiver circuit, the RF front end, short for radio frequency front end, is a generic term for all the circuitry between a receiver's antenna input up to and including the mixer stage. [1]
The Schematic diagram over the HamSphere Virtual Transceiver System. HamSphere is a subscription-based internet service that simulates amateur radio communication using VoIP connections over the Internet. The simulator allows licensed radio amateurs and unlicensed enthusiasts to communicate with one another using a simulated ionosphere.
The first presumed D-STAR radio including pictures and diagrams can be found at Moetronix.com's Digital Voice Transceiver Project. This page includes the schematic, source, and whitepaper. Another project is Satoshi Yasuda's (7M3TJZ/AD6GZ) experiments with a UT-118 DV adapter.