Search results
Results from the WOW.Com Content Network
Tests if two strings are equal. See also #Compare and #Compare. Note that doing equality checks via a generic Compare with integer result is not only confusing for the programmer but is often a significantly more expensive operation; this is especially true when using "C-strings".
For example, two string objects may be distinct objects (unequal in the first sense) but contain the same sequence of characters (equal in the second sense). See identity for more of this issue. Real numbers, including many simple fractions , cannot be represented exactly in floating-point arithmetic , and it may be necessary to test for ...
The #ifeq function selects one of two alternatives based on whether two test strings are equal to each other. {{#ifeq: string 1 | string 2 | value if equal | value if not equal}} If both strings are valid numerical values, they are compared as numbers, rather than as literal strings: {{#ifeq: 01 | 1 | equal | not equal }} → equal
The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.
It is at least the absolute value of the difference of the sizes of the two strings. It is at most the length of the longer string. It is zero if and only if the strings are equal. If the strings have the same size, the Hamming distance is an upper bound on the Levenshtein distance. The Hamming distance is the number of positions at which the ...
In C, the functions strcmp and memcmp perform a three-way comparison between strings and memory buffers, respectively. They return a negative number when the first argument is lexicographically smaller than the second, zero when the arguments are equal, and a positive number otherwise.
In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".