Search results
Results from the WOW.Com Content Network
Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this ...
The set of the equivalence classes is sometimes called the quotient set or the quotient space of by , and is denoted by /. When the set S {\displaystyle S} has some structure (such as a group operation or a topology ) and the equivalence relation ∼ {\displaystyle \,\sim \,} is compatible with this structure, the quotient set often inherits a ...
Given any set , an equivalence relation over the set [] of all functions can be obtained as follows. Two functions are deemed equivalent when their respective sets of fixpoints have the same cardinality , corresponding to cycles of length one in a permutation .
Ernst Zermelo, a contributer to modern Set theory, was the first to explicitly formalize set equality in his Zermelo set theory (now obsolete), by his Axiom der Bestimmtheit. [31] Equality of sets is axiomatized in set theory in two different ways, depending on whether the axioms are based on a first-order language with or without equality.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Define the two measures on the real line as = [,] () = [,] for all Borel sets. Then and are equivalent, since all sets outside of [,] have and measure zero, and a set inside [,] is a -null set or a -null set exactly when it is a null set with respect to Lebesgue measure.
Namely, the bijection X × X → Y × Y sends (x 1,x 2) to (f(x 1),f(x 2)); the bijection P(X) → P(Y) sends a subset A of X into its image f(A) in Y; and so on, recursively: a scale set being either product of scale sets or power set of a scale set, one of the two constructions applies. Let (X,U) and (Y,V) be two structures of the same signature.
The set of integers and the set of even integers have the same order type, because the mapping is a bijection that preserves the order. But the set of integers and the set of rational numbers (with the standard ordering) do not have the same order type, because even though the sets are of the same size (they are both countably infinite ), there ...