Search results
Results from the WOW.Com Content Network
In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
The definition extends naturally to more than two random variables. We say that random variables , …, are i.i.d. if they are independent (see further Independence (probability theory) § More than two random variables) and identically distributed, i.e. if and only if
The independent variables are mentioned in the list of arguments that the function takes, whereas the parameters are not. For example, in the logarithmic function f ( x ) = log b ( x ) , {\displaystyle f(x)=\log _{b}(x),} the base b {\displaystyle b} is considered a parameter.
In some instances of bivariate data, it is determined that one variable influences or determines the second variable, and the terms dependent and independent variables are used to distinguish between the two types of variables. In the above example, the length of a person's legs is the independent variable.
Then the random variables and are uncorrelated, and each of them is normally distributed (with mean 0 and variance 1), but they are not independent. [ 7 ] : 93 It is well-known that the ratio C {\displaystyle C} of two independent standard normal random deviates X i {\displaystyle X_{i}} and Y i {\displaystyle Y_{i}} has a Cauchy distribution .
Independent increments are a basic property of many stochastic processes and are often incorporated in their definition. The notion of independent increments and independent S-increments of random measures plays an important role in the characterization of Poisson point process and infinite divisibility.