enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Repolarization - Wikipedia

    en.wikipedia.org/wiki/Repolarization

    The channels are active during repolarization as well as during the atrial diastole phase when the current undergoes hyperpolarization. [14] Specifically, these channels are activated when Ca 2+ binds to calmodulin (CaM) because the N-lobe of CaM interacts with the channel's S4/S5 linker to induce conformational change. [ 15 ]

  3. Afterhyperpolarization - Wikipedia

    en.wikipedia.org/wiki/Afterhyperpolarization

    During single action potentials, transient depolarization of the membrane opens more voltage-gated K + channels than are open in the resting state, many of which do not close immediately when the membrane returns to its normal resting voltage. This can lead to an "undershoot" of the membrane potential to values that are more polarized ...

  4. Cardiac action potential - Wikipedia

    en.wikipedia.org/wiki/Cardiac_action_potential

    During phase 3 (the "rapid repolarization" phase) of the action potential, the L-type Ca 2+ channels close, while the slow delayed rectifier (I Ks) K + channels remain open as more potassium leak channels open. This ensures a net outward positive current, corresponding to negative change in membrane potential, thus allowing more types of K ...

  5. Refractory period (physiology) - Wikipedia

    en.wikipedia.org/wiki/Refractory_period_(physiology)

    Voltage-gated sodium channels have two gating mechanisms, the activation mechanism that opens the channel with depolarization and the inactivation mechanism that closes the channel with repolarization. While the channel is in the inactive state, it will not open in response to depolarization. The period when the majority of sodium channels ...

  6. Sinoatrial node - Wikipedia

    en.wikipedia.org/wiki/Sinoatrial_node

    This phase is the repolarization phase. This occurs due to the inactivation of L-type calcium channels (preventing the movement of Ca 2+ into the cell) and the activation of potassium channels, which allows the flow of K + out of the cell, making the membrane potential more negative. [17]

  7. Cardiac transient outward potassium current - Wikipedia

    en.wikipedia.org/wiki/Cardiac_transient_outward...

    I to1 is active during phase 1, causing a fast repolarization of the action potential. The cardiac transient outward potassium current (referred to as I to1 or I to [1]) is one of the ion currents across the cell membrane of heart muscle cells. It is the main contributing current during the repolarizing phase 1 of the cardiac action potential.

  8. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    After the action potential peak is reached, the neuron begins repolarization (3), where the sodium channels close and potassium channels open, allowing potassium ions to cross the membrane into the extracellular fluid, returning the membrane potential to a negative value.

  9. Electrocardiography - Wikipedia

    en.wikipedia.org/wiki/Electrocardiography

    This causes repolarization to start from the apex of the heart and move upwards. Since repolarization is the spread of negative current as membrane potentials decrease back down to the resting membrane potential, the red arrow in the animation is pointing in the direction opposite of the repolarization.