Search results
Results from the WOW.Com Content Network
The method proceeds by calculating the heat capacity rates (i.e. mass flow rate multiplied by specific heat capacity) and for the hot and cold fluids respectively. To determine the maximum possible heat transfer rate in the heat exchanger, the minimum heat capacity rate must be used, denoted as C m i n {\displaystyle \ C_{\mathrm {min} }} :
The best known [1] general exact algorithm is due to H. J. Ryser ().Ryser's method is based on an inclusion–exclusion formula that can be given [2] as follows: Let be obtained from A by deleting k columns, let () be the product of the row-sums of , and let be the sum of the values of () over all possible .
A variant of the metric perm is used in DIN Standard 53122, where permeance is also expressed in grams per square meter per day, but at a fixed, "standard" vapor-pressure difference of 17.918 mmHg. This unit is thus 17.918 times smaller than a metric perm, corresponding to about 0.084683 of a U.S. perm.
Laplace's expansion by minors for computing the determinant along a row, column or diagonal extends to the permanent by ignoring all signs. [9]For every , = =,,,where , is the entry of the ith row and the jth column of B, and , is the permanent of the submatrix obtained by removing the ith row and the jth column of B.
A direct practical application of the heat equation, in conjunction with Fourier theory, in spherical coordinates, is the prediction of thermal transfer profiles and the measurement of the thermal diffusivity in polymers (Unsworth and Duarte). This dual theoretical-experimental method is applicable to rubber, various other polymeric materials ...
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.
This equation is derived in Section 49, at the opening of the chapter on "Thermal Conduction in Fluids" in the sixth volume of L.D. Landau and E.M. Lifshitz's Course of Theoretical Physics. [1] It might be used to measure the heat transfer and air flow in a domestic refrigerator, [ 4 ] to do a harmonic analysis of regenerators, [ 5 ] or to ...
Diagram depicting heat flux through a thermal insulation material with thermal conductivity, k, and thickness, x. Heat flux can be directly measured using a single heat flux sensor located on either surface or embedded within the material. Using this method, knowing the values of k and x of the material are not required.