Search results
Results from the WOW.Com Content Network
A diagram showing the relationship for flow depth (y) and total Energy (E) for a given flow (Q). Note the location of critical flow, subcritical flow, and supercritical flow. The energy equation used for open channel flow computations is a simplification of the Bernoulli Equation (See Bernoulli Principle ), which takes into account pressure ...
The method consists of filling the flow area with stream and equipotential lines, which are everywhere perpendicular to each other, making a curvilinear grid.Typically there are two surfaces (boundaries) which are at constant values of potential or hydraulic head (upstream and downstream ends), and the other surfaces are no-flow boundaries (i.e., impermeable; for example the bottom of the dam ...
The Hjulström curve, named after Filip Hjulström (1902–1982), is a graph used by hydrologists and geologists to determine whether a river will erode, transport, or deposit sediment. It was originally published in his doctoral thesis "Studies of the morphological activity of rivers as illustrated by the river Fyris. [1]" in 1935. The graph ...
Governing equations are used to mathematically define the behavior of the system. Algebraic equations are likely often used for simple systems, while ordinary and partial differential equations are often used for problems that change in space in time. Examples of governing equations include:
It also determines how much work the channel can do, for example, in moving sediment. All else equal, a river with a larger hydraulic radius will have a higher flow velocity, and also a larger cross sectional area through which that faster water can travel. This means the greater the hydraulic radius, the larger volume of water the channel can ...
Given a starting node, we work our way around the loop in a clockwise fashion, as illustrated by Loop 1. We add up the head losses according to the Darcy–Weisbach equation for each pipe if Q is in the same direction as our loop like Q1, and subtract the head loss if the flow is in the reverse direction, like Q4.
Stream power, originally derived by R. A. Bagnold in the 1960s, is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. [1] Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the ...
The equations used are the Saint-Venant equations or the associated dynamic wave equations. [5] [6] The hydraulic models (e.g. dynamic and diffusion wave models) require the gathering of a lot of data related to river geometry and morphology and consume a lot of computer resources in order to solve the equations numerically. [7] [8] [9]