Search results
Results from the WOW.Com Content Network
Acetic Anhydride: 139.0 [6] Ethylene Dichloride: 1.25 83.5 −35 [7] Acetonitrile: 0.78 81.6 −45 [8] Heptane: 98.4 [9] Isobutanol: 107.7 [10] n-Hexane: 0.66 68.7 [11] n-Butanol: 117.7 [12] Hydrochloric Acid: 84.8 [13] tert-Butanol: 82.5 [14] Chlorobenzene: 131.7 [15] p-chlorobenzotrifluoride: 1.34 136 –36.1 [16] MTBE: 55.2 [17] Pentane: 36. ...
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
The high reactivity of thiophene toward sulfonation is the basis for the separation of thiophene from benzene, which are difficult to separate by distillation due to their similar boiling points (4 °C difference at ambient pressure). Like benzene, thiophene forms an azeotrope with ethanol.
Because acetic anhydride is not stable in water, the conversion is conducted under anhydrous conditions. To a decreasing extent, acetic anhydride is also prepared by the reaction of ketene with acetic acid at 45–55 °C and low pressure (0.05–0.2 bar). [8] H 2 C=C=O + CH 3 COOH → (CH 3 CO) 2 O (ΔH = −63 kJ/mol)
This is a list of the various reported boiling points for the elements, with recommended values to be used elsewhere on Wikipedia. For broader coverage of this topic, see Boiling point . Boiling points, Master List format
If the two layers are heated together, the system of layers will boil at 53.3 °C, which is lower than either the boiling point of chloroform (61.2 °C) or the boiling point of water (100 °C). The vapor will consist of 97.0% chloroform and 3.0% water regardless of how much of each liquid layer is present provided both layers are indeed present.
Gas properties Std enthalpy change of formation Δ f H o gas –438.1 kJ/mol Standard molar entropy S o gas: 282.84 J/(mol K) Heat capacity c p: 63.4 J/(mol K) van der Waals' constants [2] a = 1782.3 L 2 kPa/mol 2 b = 0.1068 liter per mole
The boiling point for each isomer is around 140 °C (284 °F). The density of each isomer is around 0.87 g/mL (7.3 lb/US gal; 8.7 lb/imp gal) and thus is less dense than water . The odor of xylene is detectable at concentrations as low as 0.08 to 3.7 ppm (parts of xylene per million parts of air) and can be tasted in water at 0.53 to 1.8 ppm.