Search results
Results from the WOW.Com Content Network
The simplest DNA end of a double stranded molecule is called a blunt end. Blunt ends are also known as non-cohesive ends. In a blunt-ended molecule, both strands terminate in a base pair. Blunt ends are not always desired in biotechnology since when using a DNA ligase to join two molecules into one, the yield is significantly lower with blunt ...
Lambda strains, mutated at specific sites, are unable to lysogenize cells; instead, they grow and enter the lytic cycle after superinfecting an already lysogenized cell. [ 3 ] The phage particle consists of a head (also known as a capsid ), [ 4 ] a tail, and tail fibers (see image of virus below).
The prokaryotic cell is shown with its DNA, in green. 2. The bacteriophage attaches and releases its DNA, shown in red, into the prokaryotic cell. 3. The phage DNA then moves through the cell to the host's DNA. 4. The phage DNA integrates itself into the host cell's DNA, creating prophage. 5. The prophage then remains dormant until the host ...
The smallest known eukaryotic ligase is Chlorella virus DNA ligase (ChVLig). It contains only 298 amino acids. When ChVLig is the only source of ligase in the cell, it can continue to support mitotic development, and nonhomologous end joining in budding yeasts. [34] DNA Ligase I (Lig1) is accountable for Okazaki Fragments ligation.
When the Integration Host Factor was first discovered, it was only known for the site-specific recombination of bacteriophage. [4] This is all we knew for a while but through another article, we were able to find that with further research, IHF plays a key role in the scope of physiological processes of E. Coli, including site-specific recombination activities, phage packaging and partitioning ...
These sites usually contain a 5 to 9 base pair overhang that can create a cohesive end. [10] Transposase then holds the sequence in a crossed formation and ligates the donor strand to the target strand. The structure formed by the duplex of DNA and transposase in replicative transposons is known as the Shapiro Intermediate. [11]
P1 is a temperate bacteriophage that infects Escherichia coli and some other bacteria. When undergoing a lysogenic cycle the phage genome exists as a plasmid in the bacterium [1] unlike other phages (e.g. the lambda phage) that integrate into the host DNA.
A lysogen or lysogenic bacteria is a bacterial cell that can produce and transfer the ability to produce a phage. [1] A prophage is either integrated into the host bacteria's chromosome or more rarely exists as a stable plasmid within the host cell.