Search results
Results from the WOW.Com Content Network
An icosahedron can be inscribed in a dodecahedron by placing its vertices at the face centers of the dodecahedron, and vice versa. [17] An icosahedron can be inscribed in an octahedron by placing its 12 vertices on the 12 edges of the octahedron such that they divide each edge into its two golden sections. Because the golden sections are ...
Convex regular icosahedron A tensegrity icosahedron. In geometry, an icosahedron (/ ˌ aɪ k ɒ s ə ˈ h iː d r ən,-k ə-,-k oʊ-/ or / aɪ ˌ k ɒ s ə ˈ h iː d r ən / [1]) is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'.
The 92 vertices lie on the surfaces of three concentric spheres. The innermost group of 20 vertices form the vertices of a regular dodecahedron; the next layer of 12 form the vertices of a regular icosahedron; and the outer layer of 60 form the vertices of a nonuniform truncated icosahedron. The radii of these spheres are in the ratio [11]
The truncated icosahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. [5] It has the same symmetry as the regular icosahedron, the icosahedral symmetry, and it also has the property of vertex-transitivity.
Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.
The regular icosahedron can be constructed by intersecting three golden rectangles perpendicularly, arranged in two-by-two orthogonal, and connecting each of the golden rectangle's vertices with a segment line. There are 12 regular icosahedron vertices, considered as the center of 12 regular dodecahedron faces. [13]
In the above coordinates, the first 12 vertices form a regular icosahedron, the next 20 vertices (those with R) form a regular dodecahedron, and the last 30 vertices (those with S) form an icosidodecahedron. Normalizing all vertices to the unit sphere gives a spherical disdyakis triacontahedron
For example, the point with coordinates (+, +, +) is the intersection of the plane with equation () + + = and of the line with system of equations = =. A deltoidal icositetrahedron has three regular-octagon equators, lying in three orthogonal planes.