Search results
Results from the WOW.Com Content Network
These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [ + ], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.
A thermal profile is a complex set of time-temperature data typically associated with the measurement of thermal temperatures in an oven (ex: reflow oven). The thermal profile is often measured along a variety of dimensions such as slope, soak, time above liquidus (TAL), and peak. A thermal profile can be ranked on how it fits in a process ...
The temperature profile is the temperature as a function of at a fixed position. For laminar flow over a flat plate at zero incidence, the thermal boundary layer thickness is given by: [ 2 ] δ T = δ v P r − 1 / 3 {\displaystyle \delta _{T}=\delta _{v}\mathrm {Pr} ^{-1/3}}
For each profile statistic the percentage used of the respective process window is calculated, and the worst case (i.e. highest percentage) is the PWI. For example, a thermal profile with three thermocouples, with four profile statistics logged for each thermocouple, would have a set of twelve statistics for that thermal profile. In this case ...
A thermal boundary layer develops if the fluid free stream temperature and the surface temperatures differ. A temperature profile exists due to the energy exchange resulting from this temperature difference. Thermal Boundary Layer. The heat transfer rate can be written using Newton's law of cooling as
The thermal entrance length is the distance for incoming flow in a pipe to form a temperature profile with a stable shape. The shape of the fully developed temperature profile is determined by temperature and heat flux conditions along the inside wall of the pipe, as well as fluid properties. [2]
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.
The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by