enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. x86 memory models - Wikipedia

    en.wikipedia.org/wiki/X86_memory_models

    On the x86-64 platform, a total of seven memory models exist, [7] as the majority of symbol references are only 32 bits wide, and if the addresses are known at link time (as opposed to position-independent code). This does not affect the pointers used, which are always flat 64-bit pointers, but only how values that have to be accessed via ...

  3. x86 memory segmentation - Wikipedia

    en.wikipedia.org/wiki/X86_memory_segmentation

    The memory model concept derives from the setup of the segment registers. For example, in the tiny model CS=DS=SS, that is the program's code, data, and stack are all contained within a single 64 KB segment. In the small memory model DS=SS, so both data and stack reside in the same segment; CS points to a different code segment of up to 64 KB.

  4. Far pointer - Wikipedia

    en.wikipedia.org/wiki/Far_pointer

    For example, in an Intel 8086, as well as in later processors running 16-bit code, a far pointer has two parts: a 16-bit segment value, and a 16-bit offset value. A linear address is obtained by shifting the binary segment value four times to the left, and then adding the offset value. Hence the effective address is 21 bits [Note 1]. There can ...

  5. x86 instruction listings - Wikipedia

    en.wikipedia.org/wiki/X86_instruction_listings

    Will change OperandSize from 16-bit to 32-bit if CS.D=0, or from 32-bit to 16-bit if CS.D=1. 67h: AddressSize override. Will change AddressSize from 16-bit to 32-bit if CS.D=0, or from 32-bit to 16-bit if CS.D=1. The 80386 also introduced the two new segment registers FS and GS as well as the x86 control, debug and test registers.

  6. x86 - Wikipedia

    en.wikipedia.org/wiki/X86

    The 8086 was introduced in 1978 as a fully 16-bit extension of 8-bit Intel's 8080 microprocessor, with memory segmentation as a solution for addressing more memory than can be covered by a plain 16-bit address. The term "x86" came into being because the names of several successors to Intel's 8086 processor end in "86", including the 80186 ...

  7. 16-bit computing - Wikipedia

    en.wikipedia.org/wiki/16-bit_computing

    In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits (2 octets) wide.Also, 16-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are microcomputers that use 16-bit microprocessors.

  8. Memory segmentation - Wikipedia

    en.wikipedia.org/wiki/Memory_segmentation

    The Intel 80286 and later processors add "286 protected mode", which retains 16-bit addressing, and adds segmentation (without paging) and per-segment memory protection. For backward compatibility, all x86 CPUs start up in "real mode", with the same fixed overlapping 64 KiB segments, no memory protection, only 1 MiB physical address space, and ...

  9. Intel 8086 - Wikipedia

    en.wikipedia.org/wiki/Intel_8086

    The 8086 [3] (also called iAPX 86) [4] is a 16-bit microprocessor chip designed by Intel between early 1976 and June 8, 1978, when it was released. The Intel 8088, released July 1, 1979, [5] is a slightly modified chip with an external 8-bit data bus (allowing the use of cheaper and fewer supporting ICs), [note 1] and is notable as the processor used in the original IBM PC design.