Search results
Results from the WOW.Com Content Network
A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, [1] but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. [2]
The largest ocean current is the Antarctic Circumpolar Current (ACC), a wind-driven current which flows clockwise uninterrupted around Antarctica. The ACC connects all the ocean basins together, and also provides a link between the atmosphere and the deep ocean due to the way water upwells and downwells on either side of it.
The atmospheric circulation can be viewed as a heat engine driven by the Sun's energy and whose energy sink, ultimately, is the blackness of space. The work produced by that engine causes the motion of the masses of air, and in that process it redistributes the energy absorbed by the Earth's surface near the tropics to the latitudes nearer the ...
In oceanography, a gyre (/ ˈ dʒ aɪ ər /) is any large system of ocean surface currents moving in a circular fashion driven by wind movements. Gyres are caused by the Coriolis effect; planetary vorticity, horizontal friction and vertical friction determine the circulatory patterns from the wind stress curl ().
Ekman transport is the net mass transport of the ocean surface resulting from wind stress and the Coriolis force. As wind blows across the ocean surface, it causes a frictional force that drags the uppermost surface water along with it. Due to the Earth's rotation, these surface currents develop at 45° to the wind direction.
A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents. Thermohaline circulation. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.
Due to the Coriolis effect, surface water moves at a 90° angle to the wind current. If the wind moves in a direction causing the water to be pulled away from the coast then Ekman suction will occur. [1] On the other hand, if the wind is moving in such a way that surface waters move towards the shoreline then Ekman pumping will take place. [1]
The Equatorial Counter Current is an eastward flowing, wind-driven current which extends to depths of 100–150 metres (330–490 ft) in the Atlantic, Indian, and Pacific Oceans. More often called the North Equatorial Countercurrent (NECC) , this current flows west-to-east at about 3-10°N in the Atlantic , Indian Ocean and Pacific basins ...