Search results
Results from the WOW.Com Content Network
At high altitude, in the short term, the lack of oxygen is sensed by the carotid bodies, which causes an increase in the breathing depth and rate . However, hyperpnea also causes the adverse effect of respiratory alkalosis , inhibiting the respiratory center from enhancing the respiratory rate as much as would be required.
Dehydration due to the higher rate of water vapor lost from the lungs at higher altitudes may contribute to the symptoms of altitude sickness. [13] The rate of ascent, altitude attained, amount of physical activity at high altitude, as well as individual susceptibility, are contributing factors to the onset and severity of high-altitude illness.
Re-entry HAPE is also an entity that has been described in persons who normally live at high altitude but who develop pulmonary edema after returning from a stay at low altitude. [3] If HAPE is not treated, there is a 50% risk of mortality. [4] Symptoms include crackling sounds when breathing, dyspnea (at rest), and cyanosis. [4]
The exact mechanisms behind exercise hyperpnea are not well understood, and some hypotheses are somewhat controversial. However, in addition to low oxygen, high carbon dioxide, and low pH levels, there appears to be a complex interplay of factors related to the nervous system and the respiratory centers of the brain that governs hyperpnea. [3]
CMS was first described in 1925 by Carlos Monge Medrano, a Peruvian doctor who specialised in diseases of high altitude. [3] While acute mountain sickness is experienced shortly after ascent to high altitude, chronic mountain sickness may develop only after many years of living at high altitude. In medicine, high altitude is defined as over ...
Although it typically causes mild, cold-like symptoms and most people recover in one to two weeks, it can be a serious infection for infants and older adults, resulting in hospitalization, the CDC ...
Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate , abnormal blood gases (hypoxemia, hypercapnia, or both), and evidence of increased work of breathing.
This response can be attributed to genetic factors, but the development of the resistance to acute hypoxia is highly affected by when the individual is exposed to high altitude; [20] while genetic factors play an indefinite role in a person's HVR, because long term migrants do not show reduction in their reactions of high altitude even after ...