enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plotting algorithms for the Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Plotting_algorithms_for...

    Every pixel that contains a point of the Mandelbrot set is colored black. Every pixel that is colored black is close to the Mandelbrot set. Exterior distance estimate may be used to color whole complement of Mandelbrot set. The upper bound b for the distance estimate of a pixel c (a complex number) from the Mandelbrot set is given by [6] [7] [8]

  3. Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Mandelbrot_set

    The Mandelbrot set within a continuously colored environment. The Mandelbrot set (/ ˈ m æ n d əl b r oʊ t,-b r ɒ t /) [1] [2] is a two-dimensional set with a relatively simple definition that exhibits great complexity, especially as it is magnified.

  4. Burning Ship fractal - Wikipedia

    en.wikipedia.org/wiki/Burning_Ship_fractal

    The difference between this calculation and that for the Mandelbrot set is that the real and imaginary components are set to their respective absolute values before squaring at each iteration. [1] The mapping is non-analytic because its real and imaginary parts do not obey the Cauchy–Riemann equations .

  5. Desmos - Wikipedia

    en.wikipedia.org/wiki/Desmos

    With new performance updates, graphs that include the Mandelbrot set and the Ducks fractal can be made on Desmos. Features such as simulations and tickers also allowed users to create functional interactive games. The usage of these features can be found in Desmos's annual art contest. [21]

  6. Mathematical visualization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_visualization

    The Mandelbrot set, one of the most famous examples of mathematical visualization.. Mathematical phenomena can be understood and explored via visualization.Classically, this consisted of two-dimensional drawings or building three-dimensional models (particularly plaster models in the 19th and early 20th century).

  7. Connectedness locus - Wikipedia

    en.wikipedia.org/wiki/Connectedness_locus

    Without doubt, the most famous connectedness locus is the Mandelbrot set, which arises from the family of complex quadratic polynomials : = +The connectedness loci of the higher-degree unicritical families,

  8. Feigenbaum constants - Wikipedia

    en.wikipedia.org/wiki/Feigenbaum_constants

    Self-similarity in the Mandelbrot set shown by zooming in on a round feature while panning in the negative-x direction. The display center pans from (−1, 0) to (−1.31, 0) while the view magnifies from 0.5 × 0.5 to 0.12 × 0.12 to approximate the Feigenbaum ratio. In the case of the Mandelbrot set for complex quadratic polynomial

  9. Misiurewicz point - Wikipedia

    en.wikipedia.org/wiki/Misiurewicz_point

    A preperiodic orbit. In mathematics, a Misiurewicz point is a parameter value in the Mandelbrot set (the parameter space of complex quadratic maps) and also in real quadratic maps of the interval [1] for which the critical point is strictly pre-periodic (i.e., it becomes periodic after finitely many iterations but is not periodic itself).