Search results
Results from the WOW.Com Content Network
An interactive proof session in CoqIDE, showing the proof script on the left and the proof state on the right. In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human–machine collaboration.
The Isabelle [a] automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala.As a Logic for Computable Functions (LCF) style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring, yet supporting, explicit proof objects.
An interactive proof session in CoqIDE, showing the proof script on the left and the proof state on the right. Coq is an interactive theorem prover first released in 1989. It allows for expressing mathematical assertions, mechanically checks proofs of these assertions, helps find formal proofs, and extracts a certified program from the constructive proof of its formal specification.
Another approach is deductive verification. [5] [6] It consists of generating from the system and its specifications (and possibly other annotations) a collection of mathematical proof obligations, the truth of which imply conformance of the system to its specification, and discharging these obligations using either proof assistants (interactive theorem provers) (such as HOL, ACL2, Isabelle ...
Jape supports human-directed discovery of proofs in a logic which is defined by the user as a system of inference rules. It maps the user's gestures (e.g. typing, mouse-clicks or mouse-drags) to the assistant's proof actions.
Macbeth is using Lean to teach students the fundamentals of mathematical proof with instant feedback. [17] In 2021, a team of researchers used Lean to verify the correctness of a proof by Peter Scholze in the area of condensed mathematics. The project garnered attention for formalizing a result at the cutting edge of mathematical research. [18]
Metamath is a formal language and an associated computer program (a proof assistant) for archiving and verifying mathematical proofs. [2] Several databases of proved theorems have been developed using Metamath covering standard results in logic, set theory, number theory, algebra, topology and analysis, among others.
The Mizar Project was started around 1973 by Andrzej Trybulec as an attempt to reconstruct mathematical vernacular so it can be checked by a computer. [3] Its current goal, apart from the continual development of the Mizar System, is the collaborative creation of a large library of formally verified proofs, covering most of the core of modern mathematics.