Search results
Results from the WOW.Com Content Network
LVF – Liquid volume fraction is the ratio of the liquid volumetric flow rate to the total volumetric flow rate. Hold up is the cross sectional area occupied by the liquid in the pipe carrying the wet gas flow. Void fraction is the ratio of the flow area occupied by the gas to the total flow area. Lockhart–Martinelli parameter. [5]
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...
SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.
Define a parcel of fluid moving through a pipe with cross-sectional area A, the length of the parcel is dx, and the volume of the parcel A dx. If mass density is ρ, the mass of the parcel is density multiplied by its volume m = ρA dx. The change in pressure over distance dx is dp and flow velocity v = dx / dt .
There are a number of correlations for slip ratio. For homogeneous flow, S = 1 (i.e. there is no slip). The Chisholm correlation [2] [3] is: = The Chisholm correlation is based on application of the simple annular flow model and equates the frictional pressure drops in the liquid and the gas phase.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Suppose the pipe has radius r = 2 cm = 2 × 10 −2 m. The area is then =. To calculate the mass flux j m (magnitude), we also need the amount of mass of water transferred through the area and the time taken. Suppose a volume V = 1.5 L = 1.5 × 10 −3 m 3 passes through in time t = 2 s.