Search results
Results from the WOW.Com Content Network
The secant lines PQ are the approximations to the tangent line. In calculus, this idea is the geometric definition of the derivative. The tangent line at point P is a secant line of the curve. A tangent line to a curve at a point P may be a secant line to that curve if it intersects the curve in at least one point other than P.
This leads to the definition of the slope of the tangent line to the graph as the limit of the difference quotients for the function f. This limit is the derivative of the function f at x = a, denoted f ′(a). Using derivatives, the equation of the tangent line can be stated as follows: = + ′ ().
The derivative of a function is then simply the slope of this tangent line. [b] Even though the tangent line only touches a single point at the point of tangency, it can be approximated by a line that goes through two points. This is known as a secant line. If the two points that the secant line goes through are close together, then the secant ...
The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change , the ratio of the instantaneous change in the dependent variable to that of the independent variable. [ 1 ]
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
Next to the intersecting chords theorem and the tangent-secant theorem, the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This is entirely analogous to the construction of the tangent to a curve as a limit of the secant lines through pairs of distinct points on C approaching P. The osculating circle S to a plane curve C at a regular point P can be characterized by the following properties: The circle S passes through P.