Search results
Results from the WOW.Com Content Network
The altitude from A (dashed line segment) intersects the extended base at D (a point outside the triangle). In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex.
The square of the altitude can be transformed into an rectangle of equal area with sides p and q with the help of three shear mappings (shear mappings preserve the area): Shear mappings with their associated fixed lines (dotted), starting with the original square as preimage each parallelogram displays the image of a shear mapping of the figure ...
An equilateral triangle is a triangle that has three equal sides. It is a special case of an isosceles triangle in the modern definition, stating that an isosceles triangle is defined at least as having two equal sides. [1] Based on the modern definition, this leads to an equilateral triangle in which one of the three sides may be considered ...
The only triangle with consecutive integers for an altitude and the sides is acute, having sides (13,14,15) and altitude from side 14 equal to 12. The smallest-perimeter triangle with integer sides in arithmetic progression, and the smallest-perimeter integer-sided triangle with distinct sides, is obtuse: namely the one with sides (2, 3, 4).
"In geometry, an altitude of a triangle is a straight line through a vertex and perpendicular to (i.e. forming a right angle with) the opposite side or an extension of the opposite side. The intersection between the (extended) side and the altitude is called the foot of the altitude. This opposite side is called the base of the altitude.
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
Since this is a unit sphere, the lengths a, b, and c are simply equal to the angles (in radians) subtended by those sides from the center of the sphere. (For a non-unit sphere, the lengths are the subtended angles times the radius, and the formula still holds if a, b and c are reinterpreted as the subtended