Search results
Results from the WOW.Com Content Network
Then, f(x)g(x) = 4x 2 + 4x + 1 = 1. Thus deg(f⋅g) = 0 which is not greater than the degrees of f and g (which each had degree 1). Since the norm function is not defined for the zero element of the ring, we consider the degree of the polynomial f(x) = 0 to also be undefined so that it follows the rules of a norm in a Euclidean domain.
Knot at infinity of X 0 (11) The classical modular curve, which we will call X 0 (n), is of degree greater than or equal to 2n when n > 1, with equality if and only if n is a prime. The polynomial Φ n has integer coefficients, and hence is defined over every field. However, the coefficients are sufficiently large that computational work with ...
The polynomial 3x 2 − 5x + 4 is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2. In the second term, the coefficient is −5. The third term is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11]
With modern computers and programs, deciding whether a polynomial is solvable by radicals can be done for polynomials of degree greater than 100. [6] Computing the solutions in radicals of solvable polynomials requires huge computations. Even for the degree five, the expression of the solutions is so huge that it has no practical interest.
Any conic should meet the line at infinity at two points according to the theorem. A hyperbola meets it at two real points corresponding to the two directions of the asymptotes. An ellipse meets it at two complex points, which are conjugate to one another—in the case of a circle, the points (1 : i : 0) and (1 : –i : 0). A parabola meets it ...
If the degree of p is greater than the degree of q, then the limit is positive or negative infinity depending on the signs of the leading coefficients; If the degree of p and q are equal, the limit is the leading coefficient of p divided by the leading coefficient of q; If the degree of p is less than the degree of q, the limit is 0.
An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = 1+ √ 5 / 2 is the golden ratio. Then the only real solution x = −1.84208... is given by
An algebraic curve in the Euclidean plane is the set of the points whose coordinates are the solutions of a bivariate polynomial equation p(x, y) = 0.This equation is often called the implicit equation of the curve, in contrast to the curves that are the graph of a function defining explicitly y as a function of x.