Search results
Results from the WOW.Com Content Network
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
The rate of oxygen consumption per gram body size decreases consistently with increasing body size. [ 41 ] In general, smaller, more streamlined organisms create laminar flow ( R < 0.5x106), whereas larger, less streamlined organisms produce turbulent flow ( R > 2.0×106). [ 19 ]
The linear velocity of a rigid body is a vector quantity, equal to the time rate of change of its linear position. Thus, it is the velocity of a reference point fixed to the body. During purely translational motion (motion with no rotation), all points on a rigid body move with the same velocity.
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
A twist is a screw used to represent the velocity of a rigid body as an angular velocity around an axis and a linear velocity along this axis. All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis.
The circular arrow represents the angular velocity of the spindle (rev/min), called the "spindle speed" by machinists. The tangential arrow represents the tangential linear velocity (m/min or sfm) at the outer diameter of the cutter, called the "cutting speed", "surface speed", or simply the "speed" by machinists. The arrow colinear with the ...
Consider a moving rigid body and the velocity of a point P on the body being a function of the position and velocity of a center-point C and the angular velocity . The linear velocity vector v P {\displaystyle \mathbf {v} _{P}} at P is expressed in terms of the velocity vector v C {\displaystyle \mathbf {v} _{C}} at C as:
In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.