Search results
Results from the WOW.Com Content Network
In decimal, the number of two-digit prime numbers is twenty-one (a base in which 21 is the fourteenth Harshad number). [ 8 ] [ 9 ] It is the smallest non-trivial example in base ten of a Fibonacci number (where 21 is the 8th member, as the sum of the preceding terms in the sequence 8 and 13 ) whose digits ( 2 , 1 ) are Fibonacci numbers and ...
The number in the n-th month is the n-th Fibonacci number. [21] The name "Fibonacci sequence" was first used by the 19th-century number theorist Édouard Lucas. [22] Solution to Fibonacci rabbit problem: In a growing idealized population, the number of rabbit pairs form the Fibonacci sequence.
A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the ...
Let k be defined as an element in F, the array of Fibonacci numbers. n = F m is the array size. If n is not a Fibonacci number, let F m be the smallest number in F that is greater than n. The array of Fibonacci numbers is defined where F k+2 = F k+1 + F k, when k ≥ 0, F 1 = 1, and F 0 = 1. To test whether an item is in the list of ordered ...
The fourth section derives approximations, both numerical and geometrical, of irrational numbers such as square roots. [9] The book also includes proofs in Euclidean geometry. [10] Fibonacci's method of solving algebraic equations shows the influence of the early 10th-century Egyptian mathematician Abū Kāmil Shujāʿ ibn Aslam. [11]
In mathematics and computing, Fibonacci coding is a universal code [citation needed] which encodes positive integers into binary code words. It is one example of representations of integers based on Fibonacci numbers. Each code word ends with "11" and contains no other instances of "11" before the end.
Overlapping sub-problems means that the space of sub-problems must be small, that is, any recursive algorithm solving the problem should solve the same sub-problems over and over, rather than generating new sub-problems. For example, consider the recursive formulation for generating the Fibonacci sequence: F i = F i−1 + F i−2, with base ...
[11] [32] This is why the infinitely-many-zeros problem is decidable: just determine if the infinitely-repeating pattern is empty. Decidability results are known when the order of a sequence is restricted to be small. For example, the Skolem problem is decidable for algebraic sequences of order up to 4.