Search results
Results from the WOW.Com Content Network
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
The time complexity of operations in the adjacency list representation can be improved by storing the sets of adjacent vertices in more efficient data structures, such as hash tables or balanced binary search trees (the latter representation requires that vertices are identified by elements of a linearly ordered set, such as integers or ...
In the context of efficient representations of graphs, J. H. Muller defined a local structure or adjacency labeling scheme for a graph G in a given family F of graphs to be an assignment of an O(log n)-bit identifier to each vertex of G, together with an algorithm (that may depend on F but is independent of the individual graph G) that takes as input two vertex identifiers and determines ...
An example of bag structure with 23 elements. There are some special data structures that parallel BFS can benefit from, such as CSR (Compressed Sparse Row), bag-structure, bitmap and so on. In the CSR, all adjacencies of a vertex is sorted and compactly stored in a contiguous chunk of memory, with adjacency of vertex i+1 next to the adjacency ...
The adjacency matrix distributed between multiple processors for parallel Prim's algorithm. In each iteration of the algorithm, every processor updates its part of C by inspecting the row of the newly inserted vertex in its set of columns in the adjacency matrix. The results are then collected and the next vertex to include in the MST is ...
Provided the graph is described using an adjacency list, Kosaraju's algorithm performs two complete traversals of the graph and so runs in Θ(V+E) (linear) time, which is asymptotically optimal because there is a matching lower bound (any algorithm must examine all vertices and edges).
"Ordered" means that the elements of the data type have some kind of explicit order to them, where an element can be considered "before" or "after" another element. This order is usually determined by the order in which the elements are added to the structure, but the elements can be rearranged in some contexts, such as sorting a list. For a ...
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.