enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.

  3. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.

  4. Secular equilibrium - Wikipedia

    en.wikipedia.org/wiki/Secular_equilibrium

    Secular equilibrium can occur in a radioactive decay chain only if the half-life of the daughter radionuclide B is much shorter than the half-life of the parent radionuclide A. In such a case, the decay rate of A and hence the production rate of B is approximately constant, because the half-life of A is very long compared to the time scales ...

  5. Radiocarbon dating - Wikipedia

    en.wikipedia.org/wiki/Radiocarbon_dating

    The half-life of a radioactive isotope (usually denoted by t 1/2) is a more familiar concept than the mean-life, so although the equations above are expressed in terms of the mean-life, it is more usual to quote the value of 14 C 's half-life than its mean-life. The currently accepted value for the half-life of 14 C is 5,700 ± 30 years. [21]

  6. Iodine-123 - Wikipedia

    en.wikipedia.org/wiki/Iodine-123

    Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).

  7. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    As an extreme example, the half-life of the isotope bismuth-209 is 2.01 × 10 19 years. The isotopes in beta-decay stable isobars that are also stable with regards to double beta decay with mass number A = 5, A = 8, 143 ≤ A ≤ 155, 160 ≤ A ≤ 162, and A ≥ 165 are theorized to undergo alpha decay.

  8. Yttrium-90 - Wikipedia

    en.wikipedia.org/wiki/Yttrium-90

    Yttrium-90 is produced by the nuclear decay of strontium-90 which has a half-life of nearly 29 years and is a fission product of uranium used in nuclear reactors. As the strontium-90 decays, chemical high-purity separation is used to isolate the yttrium-90 before precipitation.

  9. List of nuclides - Wikipedia

    en.wikipedia.org/wiki/List_of_nuclides

    At least 3,300 nuclides have been experimentally characterized [1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour). A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode .