enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude.

  3. Rotation - Wikipedia

    en.wikipedia.org/wiki/Rotation

    The corresponding rotation axis must be defined to point in a direction that limits the rotation angle to not exceed 180 degrees. (This can always be done because any rotation of more than 180 degrees about an axis m {\displaystyle m} can always be written as a rotation having 0 ≤ α ≤ 180 ∘ {\displaystyle 0\leq \alpha \leq 180^{\circ ...

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    For example, in 2-space n = 2, a rotation by angle θ has eigenvalues λ = e iθ and λ = e −iθ, so there is no axis of rotation except when θ = 0, the case of the null rotation. In 3-space n = 3 , the axis of a non-null proper rotation is always a unique line, and a rotation around this axis by angle θ has eigenvalues λ = 1, e iθ , e ...

  5. Clockwise - Wikipedia

    en.wikipedia.org/wiki/Clockwise

    For example, the daily rotation of the Earth is clockwise when viewed from above the South Pole, and counterclockwise when viewed from above the North Pole (considering "above a point" to be defined as "farther away from the center of earth and on the same ray"). The shadow of a horizontal sundial in the Northern Hemisphere rotates clockwise

  6. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  7. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    An object with an axial tilt up to 90 degrees is rotating in the same direction as its primary. An object with an axial tilt of exactly 90 degrees, has a perpendicular rotation that is neither prograde nor retrograde. An object with an axial tilt between 90 degrees and 180 degrees is rotating in the opposite direction to its orbital direction.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    These equations can be proved through straightforward matrix multiplication and application of trigonometric identities, specifically the sum and difference identities.. The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group.